Acknowledgment. We thank the National institutes of Health (GM 36792) for support.

Supplementary Material Available: Spectral data (IR, MS, ¹H NMR, and ¹³C NMR) for compounds 1–6, 9, 10, 12–18, 21, 22, and 24 (4 pages). Ordering information is given on any current masthead page.

Novel Stereospecific Silyl Group Transfer Reactions: Practical Routes to the Prostaglandins

Samuel J. Danishefsky,* Maria Paz Cabal, and Ken Chow

Department of Chemistry, Yale University New Haven, Connecticut 06511 Received January 9, 1989

The notion of synthesizing prostaglandins by dialkylation of an α,β -unsaturated ketone goes back to the early days of the field.¹ The first success in a fully functionalized setting was realized by Stork and Isobe.² Major advances in conciseness and efficiency have been introduced by Noyori,^{3,4} Johnson,⁵ and Corey.⁶

While there have been countless variations, a common theme is apparent. Addition of a nucleophilic version of the $C_{13}-C_{20}$ ("lower-chain") to C_{12} generates a C_8-C_9 enolate which is trapped with an electrophile suitable for construction of the C_7-C_1 ("upper") chain. In these schemes, the R enantiomer is employed. The stereochemical rationale of this method is that the organometallic nucleophile (Nu) attacks anti to the OP group and the electrophile attacks C_8 anti to the "lower" chain installed at C_{12} . The proper configuration at C_{15} is achieved either from the use of a suitable educt⁷ or by reduction of the C_{15} ketone.^{7.8} The general outlines of the previous three-component strategy are implied in Scheme I, where PGF_{2 $\alpha}$} is the goal system.

In this paper we disclose a new strategy wherein the $C_{12}-C_{13}$ bond is established from an electrophilic version of C_{13} , and the C_8-C_7 bond is fashioned from a nucleophilic version of C_7 . As will be seen, this method has significant advantages in terms of simplicity of building blocks and reactions. Either isomer at C_{15} becomes readily available by stereochemical communication.⁹

The success of the route arises from the confluence of several rather interesting findings. The first is that a group transfer reaction of (S)-enone 2 (vide infra) with the silylketeneacetal derivative 3 occurs cis to the OTBS group to produce the specific enolate equivalent 4.^{10,11} This compound reacts with (Z)-^{12a} or

Scheme I $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ PO \end{array} \xrightarrow{R} \\ PO \end{array} \xrightarrow{R} \\ & & \\ & & \\ & & \\ PO \end{array} \xrightarrow{R} \\ & & \\ & & \\ & & \\ PO \end{array} \xrightarrow{R} \\ & & \\$

Scheme III

(*E*)-octenal^{12b} (5 and 6, respectively) under catalysis by TiCl₄ to produce the C_{12} - C_{13} syn aldol products.^{13,14} In each case, the aldehyde has entered trans to the carbethoxymethyl group at C_8 . In each instance, the aldol process involves a second group transfer reaction of the triethylsilyl (TES) unit. Each aldehyde attacks trans to the resident group at C_8 , and a syn C_{12} - C_{13} siloxyaldol system is produced in an essentially stereospecific reaction. In each instance selective cleavage of the TES function is achieved with maintenance of the OTBS group.¹⁵ For the product derived

For comprehensive reviews of prostanoid syntheses, see: (a) Bindra,
 J. S.; Bindra, R. Prostaglandin Synthesis; Academic Press: New York, 1977.
 (b) Mitra, A. Synthesis of Prostaglandins; Wiley-Interscience: New York, 1977.
 (c) Garcia, G. A.; Maldonado, L. A.; Crabbe, P. Prostaglandin Research; Crabbe, P., Ed.; Academic Press: New York, 1977; Chapter 6. (d) New Synthetic Routes to Prostaglandins and Thromboxanes; Roberts, S. M., Scheinmann, F., Eds.; Academic Press: London, 1982.

⁽²⁾ Stork, G.; Isobe, M. J. Am. Chem. Soc. 1975, 97, 4745.

⁽³⁾ Suzuki, M.; Kawagishi, T.; Suzuki, T.; Noyori, R. Tetrahedron Lett. 1982, 23, 4057.

⁽⁴⁾ Suzuki, M.; Yanagisawa, A.; Noyori, R. J. Am. Chem. Soc. 1988, 110, 4718.

⁽⁵⁾ Johnson, C. R.; Penning, T. D. J. Am. Chem. Soc. 1988, 110, 4726.
(6) Corey, E. J.; Niimura, K.; Konishi, Y.; Hashimoto, S.; Hamada, Y. Tetrahedron Lett. 1986, 27, 2199.

⁽⁷⁾ Noyori, R.; Tomino, I.; Nishizawa, M. J. Am. Chem. Soc. 1979, 101, 5843.

⁽⁸⁾ Corey, E. J.; Becker, K. B.; Varma, R. K. J. Am. Chem. Soc. 1972, 94, 8616.

⁽⁹⁾ Danishefsky, S. J. Aldrichim. Acta 1986, 19, 59.

⁽¹⁰⁾ This phenomenon which awaits full explanation is restricted to Lewis acid catalyzed additions (as opposed to cuprate additions which occur anti to the OTBS group). It has also been extended to TiCl₄ mediated addition of allyltrimethylsilane to 2 (Chow, K. Yale University unpublished results). For similar results using 4-OTBS cyclohexenone, see: a) Danishefsky, S. J.; Simoneau, B. *Jure Appl. Chem.* 1988, 60, 1555. b) Danishefsky, S. J.; Simoneau, B. J. Am. Chem. Soc. 1989, 0000.

 ⁽¹¹⁾ All new compounds were characterized by ¹H NMR, IR, mass spectrometry, HRMS, and/or elemental analyses.
 (12) (a) Byrne, B.; Lafleur-Lawter, L. M.; Wengenroth, K. J. J. Org.

 ^{(12) (}a) Byrne, B.; Lafleur-Lawter, L. M.; Wengenroth, K. J. J. Org. Chem. 1986, 51, 2607. (b) Commercially available from Aldrich Chemical Company.

^{(13) (}a) Mukaiyama, T.; Narasaka, K.; Banno, K. Chem. Lett. 1973, 1011.
(b) Mukaiyama, T.; Banno, K.; Narasaka, K. J. Am. Chem. Soc. 1974, 96, 7503.

⁽¹⁴⁾ Masamune, S.; Ali, Sk. A.; Snitmann, D. C.; Garvey, D. S. Angew. Chem., Int. Ed. Engl. 1980, 19, 557.

from 4 + 5 (Z-series), this selective desilylation is accomplished upon exposure of the system to the aldol reaction conditions $(T_iCl_4-CH_2Cl_2, -85 \text{ °C}, 30 \text{ min})$. For the product derived from 4 + 6 (*E*-series), a subsequent reaction of the siloxy transfer product with aqueous AcOH-THF achieves the same result. The resultant alcohols are acetylated (Ac₂O; Py; DMAP) to afford acetates 7 and 8 in the indicated yields.

The pathways from compound 7 and 8 to $PGF_{2\alpha}$ were very direct indeed. Reaction of compound 7 with Pd(MeCN)₂Cl₂ led to allylic transposition of the acetate with the formation of the $E_{13,14}$ double bond and installation of the required 15S stereochemistry (see compound 9) in 72% yield.¹⁶⁻¹⁹ At this stage²⁰ reduction of the C₁₁ ketone with sodium borohydride is stereospecific in the desired sense. Acetylation provided compound 11 in 74% yield (53% overall yield from 7). Cleavage of the TBS group and lactonization was accomplished through the action of TBAF. Reaction of 12 with DIBAL resulted in formation of the lactol with deacylation to give compound 13 in 72% overall yield from 11. Reaction of 13 with phosphorane 14 under the usual conditions gave, in 53% yield,²¹ PGF_{2a} (1) whose infrared and NMR spectra as well as optical rotation and chromatographic properties were identical with those of an authentic sample.²²

The same type of allylic transposition occurred even more rapidly²³ with the E isomer 8. The rearrangement is unidirectional,²⁴ and the C_{13} - C_{14} double bond emerges cleanly trans. The stereochemistry at carbon 15 is of course R. Again, reduction of the C₁₁ ketone with sodium borohydride is stereospecific affording compound 16 which was protected as its tetrahydropyranyl ether 17 (69% overall yield from 8). Desilylation as above is accompanied by lactonization, and compound 18 is obtained in 84% yield. This substance is clearly a very valuable intermediate for preparing prostaglandins of the 15R series. We have used it to cross over to the natural series by inverting the stereochemistry at carbon 15. This was accomplished as follows. Deacylation of the 18 epiacetate afforded (98%) the 15R alcohol 19, which was inverted in a standard Mitsunobu reaction²⁵ to the 15Sbenzoate 20 in 73% yield. Treatment of this compound with

(16) For a most interesting precedent for this type of stereochemical ad-justment in the [2,3] series, see: Miller, J. G.; Kurz, W.; Untch, K. G.; Stork, G. J. Am. Chem. Soc. 1974, 96, 6774

(17) For the first application of the Pd(II)-mediated allylic acetate transposition to a modified prostaglandin intermediate, see: Grieco, P. A., Takigawa, T.; Bongers, S. L.; Tanaka, H. J. Am. Chem. Soc. 1980, 102, 7588.

(18) Pd(II)-catalyzed allylic acetate transposition was first described by: Meyer, K. DOS 2513198 (1975); Chem. Abstr. 1976, 84, 89629s.

(19) For a full review of Pd(II)-catalyzed [3,3] sigmatropic rearrange ments, see: Overman, L. E. Angew. Chem., Int. Ed. Engl. 1984, 23, 579. (20) Attempts to carry out the reduction of the C_{11} ketone before the allylic transposition results, at best, in modest stereoselectivity possibly due to com-

peting directivities from the 13-oxygen function (21) Corey, E. J.; Weinshenker, N. M.; Schaaf, T. K.; Huber, W. J. Am.

Chem. Soc. 1969, 91, 5675.

(22) The synthetic material had an optical rotation $[\alpha]_D$ +23.0° (c 1.01, THF) which is essentially the same as authentic $PGF_{2\alpha}$ ($[\alpha]_D$ +23.5°, c 1.0, THF)

(23) Not surprisingly the rate of transposition of the Z isomer is slower than that of the E isomer. For compound 7 conditions involved catalytic Pd(II) in THF at room temperature for 4 h. For compound 8, the equivalent transformation was complete after 2 h.

(24) Compound 9 and 15 failed to show indications of undergoing back rearrangement.

(25) A solution of 19 in THF was treated with triphenylphosphine (2 equiv), benzoic acid (2 equiv), and diethylazodicarboxylate (2 equiv) at room temperature. After 5 min the reaction was quenched with a solution of saturated NaHCO3. See: (a) Mitsunobu, O.; Yamada, M. Bull. Chem. Soc.

Jpn. 1967, 40, 2380. (b) Mitsunobu, O. Synthesis 1981, 1.
 (26) Deardorff, D. R.; Myles, D. C.; MacFerrin, K. D. Tetrahedron Lett.
 1985, 26, 5615.
 (27) Deardorff, D. R.; Matthews, A. J.; McMeekin, D. S.; Craney, C. L.

Tetrahedron Lett. 1986, 27, 1255.

diisobutyl aluminum hydride resulted in reduction of the lactone and debenzoylation, affording compound 21. Reaction of this compound with Wittig reagent, 14, followed by cleavage of the THP protecting group (aqueous acetic acid), again afforded PGF_{2 α} (1), this time in 46% yield from $20.^{21}$

These routes offer major advantages in terms of conciseness, availability of all the building blocks, and simplicity of the reactions. Not the least advantage is the ready access to the required (S)-enone 2. The diacetate 22, available in multigram scale from cyclopentadiene,²⁶ is converted through the action of acetylcholinesterase²⁷ in 89% yield and, essentially total optical purity, to the monoacetate 23. Protection of the alcohol as its TBS derivative through the action TBSCI and imidazole in DMF affords 24 which on simple hydrolysis (sodium methoxide) leads to 25. The latter is oxidized with manganese dioxide to the optically pure (S)-enantiomer 2. The overall conversion of 22 to 2 is achieved in 70% yield. This chemistry provides an eminently practical route for the total synthesis of prostaglandins and congeners thereof.²⁸ Experiments directed toward taking advantage of this new capability will be described in due course.

Acknowledgment. This research was supported by PHS Grant HL25848. An MEC/Fulbright Fellowship to M.P.C. is gratefully acknowledged. We thank Professor K. C. Nicolaou of the University of Pennsylvania for providing valuable correlation samples for our synthetic intermediates on the way to $PGF_{2\alpha}$. NMR spectra were obtained through the auspices of the Northeast Regional NSF/NMR facility of Yale University, which was supported by NSF Chemistry Division Grant CHE 7916210.

Supplementary Material Available: Spectral data (¹H NMR, IR, and MS) for all compounds described herein (5 pages). Ordering information is given on any current masthead page.

Hemoglobin Quaternary Structure Change Monitored Directly by Transient UV Resonance Raman Spectroscopy

Chang Su, Young D. Park,' Gang-Yu Liu, and Thomas G. Spiro*

> Department of Chemistry, Princeton University Princeton, New Jersey 08544-1009 Received November 10, 1988

We report pulse-probe transient ultraviolet resonance Raman (UVRR) spectra of photolyzed carbonmonoxy hemoglobin (HbCO) which provide direct evidence that the $R \rightarrow T$ guaternary structure change occurs in $\sim 20 \ \mu s$. This process coincides with the transition from fast to slow recombining Hb¹ and with the final optical transient of photolyzed HbCO molecules.² The UVRR spectra are interpreted as responding to H bonding changes of aromatic groups at the $\alpha_1\beta_2$ interface of the Hb tetramer. The transient signals also indicate the formation of a structural intermediate associated with the $R \rightarrow T$ transition.

Figure 1 shows a fragment of the UVRR spectra of oxy- and deoxyHb excited at 229 nm with an H2-Raman-shifted pulsed Nd:YAG laser.³ The spectra contain bands which are associated with ring modes of tyrosine (Tyr), $\nu_{8a/8b} = 1617/1601 \text{ cm}^{-1}$, and tryptophan (Trp), $W_3 = 1555 \text{ cm}^{-1}$.^{4,5} These spectra have sufficient signal/noise to expose the slight differences between oxyand deoxyHb. The difference spectrum reveals a downshift (1.5 cm⁻¹) of the Trp band and upshifts (2 cm⁻¹) in the Tyr bands.

Acad. Sci. U.S.A. 1983, 80, 2235

(4) Rava, R. P.; Spiro, T. G. J. Phys. Chem. 1985, 89, 1856.

(5) Takeuchi, H.; Harada, I. Spectrochim. Acta 1986, 42A, 1069.

⁽¹⁵⁾ A major complication arises if the TBS group is cleaved at this stage. With the C_{11} ketone still in place, β -elimination occurs to give the enone.

⁽²⁸⁾ This assessment is not meant by way of a comparison with the efficiency of previous excellent efforts (ref 2-6). A detailed analysis of the implications of our work for commercial production relative to the existing methods has not been undertaken. The attraction of our route stems from the easy availability of all of its components and the ease of their assembly. In that vein we note that, as of this writing, the (S)-enone 2 is more readily obtained than is either the (R)-enone or, indeed, the racemate.

[†]Present address: Harrison Spectroscopy Laboratory, MIT, Cambridge, Massachusetts 02139.
(1) Sawicki, C. A.; Gibson, Q. H. J. Biol. Chem. 1976, 251, 1533.
(2) Hofrichter, J.; Sommer, J. H.; Henry, E. R.; Eaton, W. A. Proc. Natl.

⁽³⁾ Fodor, S. P. A.; Rava, R. P.; Copeland, R. a.; Spiro, T. G. J. Raman Spectrosc. 1986, 17, 471.